Transcriptional regulation of the albumin gene depends on the removal of histone methylation marks by the FAD-dependent monoamine oxidase lysine-specific demethylase 1 in HepG2 human hepatocarcinoma cells.

نویسندگان

  • Dandan Liu
  • Janos Zempleni
چکیده

Lysine-specific demethylase (LSD) 1 is an FAD-dependent demethylase that catalyzes the removal of methyl groups from lysine-4 in histone H3, thereby mediating gene repression. Here we tested the hypothesis that riboflavin deficiency causes a loss of LSD1 activity in HepG2 human hepatocarcinoma cells, leading to an accumulation of lysine-4-dimethylated histone H3 (H3K4me2) marks in the albumin promoter and aberrant upregulation of albumin expression. Cells were cultured in riboflavin-defined media providing riboflavin at concentrations representing moderately deficient (3.1 nmol/L), sufficient (12.6 nmol/L), and supplemented (301 nmol/L) cells in humans for 7 d. The efficacy of treatment was confirmed by assessing glutathione reductase activity and concentrations of reduced glutathione as markers of riboflavin status. LSD activity was 21% greater in riboflavin-supplemented cells compared with riboflavin-deficient and -sufficient cells. The loss of LSD activity was associated with a gain in the abundance of H3K4me2 marks in the albumin promoter; the abundance of H3K4me2 marks was ∼170% higher in riboflavin-deficient cells compared with sufficient and supplemented cells. The abundance of the repression mark, K9-trimethylated histone H3, was 38% lower in the albumin promoter of riboflavin-deficient cells compared with the other treatment groups. The expression of albumin mRNA was aberrantly increased by 200% in riboflavin-deficient cells compared with sufficient and supplemented cells. In conclusion, riboflavin deficiency impairs gene regulation by epigenetic mechanisms, mediated by a loss of LSD1 activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-88: Comparing Epigenetic Profile of Oct4 Regulatory Region in Embryonal Carcinoma Cells under Retinoic Acid Induction

Background: Embryonal carcinoma (EC) cells derived from germ cell tumors are valuable tools for investigating differentiation and developmental biology processes in vitro. The advantage of the reproducible and rapid expansion of these cell lines provides a useful alternative to embryos for the study of mammalian cell differentiation. During early stages of cell differentiation, the rate of tran...

متن کامل

Structural basis for the inhibition of the LSD1 histone demethylase by the antidepressant trans-2-phenylcyclopropylamine.

Histone modifications, such as acetylation and methylation, are important epigenetic marks that regulate diverse biological processes that use chromatin as the template, including transcription. Dysregulation of histone acetylation and methylation leads to the silencing of tumor suppressor genes and contributes to cancer progression. Inhibitors of enzymes that catalyze the addition and removal ...

متن کامل

Cancer Therapy: Preclinical Novel Oligoamine Analogues Inhibit Lysine-Specific Demethylase 1 and Induce Reexpression of Epigenetically Silenced Genes

Purpose: Abnormal DNA CpG island hypermethylation and transcriptionally repressive histone modifications are associated with the aberrant silencing of tumor suppressor genes. Lysine methylation is a dynamic, enzymatically controlled process. Lysinespecific demethylase 1 (LSD1) has recently been identified as a histone lysine demethylase. LSD1 specifically catalyzes demethylation of mono– and di...

متن کامل

Lysine-specific demethylase 1 is strongly expressed in poorly differentiated neuroblastoma: implications for therapy.

Aberrant epigenetic changes in DNA methylation and histone acetylation are hallmarks of most cancers, whereas histone methylation was previously considered to be irreversible and less versatile. Recently, several histone demethylases were identified catalyzing the removal of methyl groups from histone H3 lysine residues and thereby influencing gene expression. Neuroblastomas continue to remain ...

متن کامل

Investigation of Histone Lysine-Specific Demethylase 5D (KDM5D) Isoform Expression in Prostate Cancer Cell Lines: a System Approach

Background: It is now well-demonstrated that histone demethylases play an important role in developmental controls, cell-fate decisions, and a variety of diseases such as cancer. Lysine-specific demethylase 5D (KDM5D) is a male-specific histone demethylase that specifically demethylates di- and tri-methyl H3K4 at the start site of active genes. In this light, the aim of this study was to invest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of nutrition

دوره 144 7  شماره 

صفحات  -

تاریخ انتشار 2014